Savitribai Phule Pune University

Faculty of Science and Technology

Syllabus for

M.E (Electronics and Communication) (Wireless Communication Technology)

(Course 2020)

M.E. (1	Savita Electronics Communica (Wit	ribai Pl ation- V th effect	hule P Wirele from A	une U ss Co cademi	niver mmu c Year	sity, nicat 2020	Pune tion T -21)	e F echnol	ogy) 2	2020 (Course
			Sem	ester-I							
Course Code	Course Name	Teac Scho (Hours,	hing eme /Week)	Exa	minati S	ion ar Schen	nd Ma ne	rking		Cred	it
		Theory	Practical	In-Sem	End-Sem	TW	OR	Total	ML	OR	Theory
504601	Advanced Digital Communications	03	-	50	50	-	-	100	-		03
504602	Cellular Wireless Communications	03	-	50	50		-	100	-	-	03
504603	Probability and Stochastic Processes	03	-	50	50	-	-	100	-	-	03
504604	Research Methodology	03	-	50	50	-	-	100	-	-	03
504605	Elective – I	04	-	50	50	-		100	-	-	04
504606	Lab Practice-I	-	08	-	-	50	50	100	02	02	-
504607	Non- Credit Course-I										-
	Total	16	08	250	250	50	50	600	02	02	16
						Т	'otal (Credits		20	
Abbreviat	ions: In-Sem: In semester TW : Term Work		End- PR :	sem: Er Practica	nd seme il	ester		TH	: Theo	ry	
Electiv	e – I / MOOCs										
1. N	Aathematics for Wireless (Commun	nication	S							
	Key Technologies for 5G W	ireless (Commu	nicatio	ons						
5. I 4 N	merner of Things Addelling and Simulation of	of Comm	nunicati	ion Sve	tems						
 . I	and Simulation (unicat	ion bys	i i i i i i i i i i i i i i i i i i i						

M.E. (I	Savitri Electronics Communica	ibai Ph tion- V	ule Pu Vireles	ne U s Coi	niver nmu	sity, nicat	Pune ion T	e Sechnol	ogy) 2	2020 (Course
	(With	effect f	rom Aca Semes	demio ster-II	e Year	· 2020	-21))				
		Tea Sch (Hours	ching eme s/Week)	Exa	mina	tion a Schei	nd Ma me	arking		Credi	t
Course Code	Course Name	Theory	Practical	In-Sem	End-Sem	TW	OR	Total	TW	OR	Theory
504608	Signal Processing Wireless Communication	03	-	50	50	_	-	100	-		03
504609	Information Theory and Coding	03	-	50	50		-	100	-	-	03
504610	Antennas for Modern Wireless Communications	03	-	50	50	-	-	100	-	-	03
504611	Elective - II	04	-	50	50	-	-	100	-	-	04
504612	Mini Project / Seminar-I	-	03	-	-	50	50	100	01	02	-
504613	Lab practice-II	-	08	-	-	50	50	100	02	02	-
504614	Non- Credit Course-II			1						I	-
	Total	13	11	200	200	100	100	600	03	04	13
		I				Т	otal (Credits		20	
Abbrevia	tions: In-Sem: In semester		End-ser	m: End	l seme	ster		TH	: Theor	у	
Elective –	- II / MOOCs		PK : PI	actica	L			UK			
1. M 2. 0 3. M	Machine Learning for Wireles Optical Wireless Communicat Modern Satellite Communicat	s Comm ion ions	unicatio	ns							
4. 1	Radar Communications										

	Saviti	ribai P	hule P	une U	niver	sity,	Pune)			
M.E. (I	Electronics Communica	ation-	Wirele	ss Co	mmu	nicat	ion T	Technol	ogy) 2	2020	Course
	(W1	th effect	trom A Seme	cademi	<u>c Yea</u> I	r 2020	-21)				
Course Code	Course Name	Teac Sche (Hours/	hing eme Week)	Exa	minat	ion ar Schen	nd Ma ne	rking		Credi	it
		Theory	Practical	In-Sem	End-Sem	TW	OR	Total	ΤW	OR	Theory
604601	Advanced Wireless Networks	03	_	50	50	-	-	100	_	_	03
604602	SDR and Cognitive Radio	03	-	50	50	-	-	100	-	-	03
604603	Elective - III	04	-	50	50	-	-	100	-	-	04
604604	Industry Internship-I / In- house Research Project-I / Seminar-II	-	03	-	-	50	50	100	01	02	_
604605	Dissertation Stage - I	-	08	-	-	50	50	100	04	04	-
604606	Non- Credit Course-III				1			I			-
	Total	10	11	150	150	100	100	500	05	06	10
-						Т	otal (Credits	16	04	21
Abbrevia	tions: In-Sem: In semester TW : Term Work]	End-sem PR : Pra	: End se ctical	emeste	r		TH OR:	: Theor : Oral	у	
Elective –	- III										
1. \	Wireless Adhoc Networks										
2. 1	Felecommunications Networl	k Manag	ement								
3.	Wireless Network Security										
4. I	VIIVIO Wireless Communica	tions									
5. (Open Elective										

	Savitri	bai Phule P	une Univ	ersity, Pu	ne		
M.E. (F	Electronics Communica (With	tion- Wirele effect from A	ss Comm cademic Y	nunicatior ear 2020-21	Technol	ogy) 2020	Course
		Semo	ester-IV		/		
Course		Teaching Scheme (Hours/Week)	Examinati	on Scheme	and Marks	Cree	lit
Code	Course Name	PR	МТ	OR	Total	ML	OR
604607	Industry Internship-II/ In- house Research Project-II / Seminar-III	03	50	50	100	01	02
604608	Dissertation Stage - II	18	150	50	200	08	10
	Total	21	200	100	300	09	12
				Tota	al Credits	21	_
Abbrevia	tions: TW : Term Work		PR : Practio	cal	0	R : Oral	

SEMESTER - I

	Savit	ribai Phule Pune Univ	ersity, Pune	
M.E. (Electrol	nics Communic	ation- Wireless Comm	unication Technolo	gy) 2020 Course
Teeshine	504001:			- Calcara
leaching	Scheme	Creaits	Examinatio	n Scheme
TH: 03 H	rs. / Week	03	In-Semester: 50 Mark	(S ulta
Duono gurigitas Ciga	ala and Crustama D	habability Theory Lincor A	End Semester: 50 Ma	ГКЅ
Course Objective	als and Systems, P	robability Theory, Linear A	ligeora	
Course Objective	s	atu danta mith		
1 The large	ourse is to provide	students with		
1. The knowl	edge and understan	ding of advanced digital tel	ecommunications syster	ns
2. Provide a s	trong foundation of	f fundamental digital comm	unication system	
3. Detailed ar	alysis of end to end	a digital communication sys	stem	ı . <i>.</i> .
4. Performance	ce evaluation of vai	rious modulation schemes, (optimum receivers, sync	hronization
techniques				
Course Outcomes	6			
CO1: Model digit	al communication s	signals and systems using a	propriate mathematical	techniques
CO2: Represent a	nd analyze various	digital modulation schemes	mathematically, and ge	ometrically.
CO3: Carry Out if	to ite comparative and	Detimum receiver for AWG	arameters N Channal	
CO4: Carry out de	noropriate modulat	tion schemes and Optimum	Receivers according to a	design criteria
CO6: Provide sou	nd evaluation of pr	actical digital communication	on systems in terms of th	heir performance and
complexity.	nd evaluation of pr	actical digital communeativ	on systems in terms of t	ten performanee and
		Course Contents		
Module I	Introduction to l	Digital Communication Sy	vstems	8Hrs
Introduction to dig	ital communication	n system, block diagram of	modern digital communi	ication system,
characterization of	communication sig	gnals, source coding, signal	space representation	•
Module II	Modulation Sch	emes		10 Hrs
Representation and	l spectral character	istics of digitally modulated	l signals Memory less M	Iodulation, PAM,
Phase modulation,	QAM, Linear mod	lulation with memory, CFS	K, CPM and MSK	, ,
Module III	Optimum Receiv	vers		10 Hrs
Correlation demod	ulator, matched fil	ter demodulator, optimum d	letector, MAP detector, 1	Maximum likelihood
sequence detector,	performance of de	tectors under AWGN		
Module IV	Synchronization	, Equalization and Estima	tion Techniques	8Hrs
Signal parameter e	stimation, likelihoo	od function, carrier recovery	, carrier phase estimation	on, ML phase
estimation, symbo	l timing estimation	, various types of equalizers	. Case Study of 5G syst	tems
Text Book				
1. John G Pro	akis, Masoud Salel	hi, , "Digital Communicatio	ns", McGraw-Hill, India	an 5 th Edition, 2018
Reference Book				
1. Bernard Sk	lar, "Digital Comn	nunications: Fundamentals	& Applications", Prentic	e Hall
Relevant MOOC	s Course			
1. Modern dig	gital communicatio	n techniques, By Prof. Suvi	aSekhar Das IIT Kha	aragpur
https://onli	necourses.nptel.ac.	in/noc21_ee11/preview		

	Saviti	ribai Phule Pune Univ	ersity, Pune	
M.E. (Electrol	nics Communica	ation- Wireless Comm	unication Technolo	gy) 2020 Course
Teaching	Scheme	Credits	Examinatio	n Scheme
			In Semester:50 Marks	5
TH: 03 H	rs. / Week	03	End Semester: 50 Ma	rks
Prerequisite: Cell	ular Technology, D	Digital Communication		
Course Objective	s: To provide good	understanding of cellular c	ommunication, wireless	channel issues and
understanding of f	uture cellular techn	ology.		
Course Outcomes	5:			
CO1: Demonstrate	e their understandin	ng on functioning of wireles	s communication system	n and evolution of
different wir	reless communication	on systems and standards.		
CO2: Compare di	fferent technologies	s used for wireless commun	ication systems.	
CO3: Demonstrate	e an ability explain	recent techniques for Wirel	less Communication syst	tems.
		Course Contents		
Module I	Introduction to c	cellular systems and traffic	c engineering	8 Hrs
Overview of Cellu	lar Systems and eve	olution 2G/3G/4G/5G, Cell	ular Concepts – Frequen	cy reuse, Co
channel and Adjac	ent channel Interfer	rence, C/I, Handoff, Blocki	ng, Erlang Capacity.	
Module II	Fundamentals of	f wireless communication		10 Hrs
Wireless Channel,	Wireless propagati	on, Link budget, Free-space	e path loss, Noise figure	of receiver,
Multipath fading,	Shadowing, Fading	margin, Shadowing margin	n, Wireless Channel Cap	acity, OFDM and
LTE, Large Scale	Propagation effects	and Channel Models		
Module III	Fundamentals o	f 5G architecture		10 Hrs
Difference betwee	n 4G and 5G,, 5G A	Architecture, Planning of 50	G Network, Quality of Se	ervice, Radio
Network, Require	ments, Security, SI	M in 5G Era, Specifications	, Standardization, Termi	nal States,
Module IV	Future Generation	ons		8 Hrs
Future Generation	ons(where is the 6	G?), Health Consideration	ns, Identifiers, Interface	es, ,Key Derivation,
Location Based S	ervices, Massive I	Internet of Things, Measu	rements, Network Func	ctions Virtualization,
Network Slicing, O	Open Source, , User	r Equipment, Vehicle-to-Ve	chicle communications (V2V), Virtual Reality
(VR/AR/XR).				
Text Books				
1. Theodore S	5. Rappaport, "Wire	eless Communications: Prin	ciples and Practice", Pea	arson, 2 nd Edition.
Reference Books				
1. Aditya K J	agannatham, "Princ	ciples of Modern Wireless (Communications", McG	raw Hill, 2017

Saviti	ribai Phule Pune Univ	ersity, Pune	
M.E. (Electronics Communics	ation- Wireless Comm	unication Technolog	y) 2020 Course
Teaching Scheme	Credita	Evamination	Sahama
Teaching Scheme	Creaits	Examination	Scheme
TH: 03Hrs. / Week	03	Find Semester: 50 Marks	zs
Prerequisite: Set Theory, Counting r	principles Calculus		NO
Course Objectives	interpres, carcaras		
Objective of this course is to provide	students with		
1. The knowledge and understan	ding of advanced digital tel	ecommunications systems	s
2. Provide a strong foundation of	f fundamental digital comm	unication system	
3. Detailed analysis of end to end	d digital communication sys	stem	
4. Performance evaluation of var	rious modulation schemes, o	optimum receivers, synchi	ronization
techniques.			
Course Outcomes			
CO1: Model digital communication s	ignals and systems using a	opropriate mathematical te	echniques
CO2: Represent and analyze various	digital modulation schemes	mathematically, and geor	metrically.
CO3: Carry Out the comparative analysis of C	lysis in terms of specified p	arameters	
CO4: Carry out detailed analysis of C	ion schemes and Optimum	Receivers according to de	esion criteria
CO6: Provide sound evaluation of pra	actical digital communication	on systems in terms of the	eir performance and
complexity.	8	jan in a star	I
	Course Contents		
Module I Basics of Probab	oility Theory		8Hrs
Introduction to deterministic and prob	bability model with suitable	example, Random experin	ment and its sample
space: discrete and continuous sample	le space, Events, Axiomati	c definition of probability	y, Discrete uniform
law.			
Conditional probability, Multiplicat	ion rule of probability, 7	Total probability rule, B	Bayes' theorem for
probability, Notion of independency.			
Module II Random Variab	le		10Hrs
Definition of random variable, Discre	te, continuous and mixed ra	andom variable.	
Probability mass function (PMF), pro	bability density function (P	DF), cumulative distributi	ion function
(CDF). Standard discrete distributions	s: Uniform, Bernoulli, Bino	mial, Geometric and Poiss	son. Standard
continuous distribution: Uniform, exp	onential, Gaussian, Rayleig	gh random variable.	
Function of one random variable: exp	pectations, conditional expe	cted value, and transform	nations of a random
variable.			
Multiple random variables: introducti	on, vector random variable,	joint PMF, PDF and CDI	F, marginal,
conditional PMF and PDF, independe	ency, sum of two or more ra	ndom variables.	
Function of multiple random variable	s: expectations, correlation,	covariance, transformatio	ons.
Jointly Gaussian random variables, pr	operties, linear transformat	10n of Gaussian random v	variable, central
limit theorem.			

Modu	le III	Random Process	10 Hrs
Introdu	uction, Class	ification, Joint CDF and PDF, Statistical averages: mean variance, me	an square value,
autoco	rrelation, au	tocovariance, cross-correlation, and cross-covariance.	
Station	narity: strict	sense stationary (SSS) and weak sense stationary (WSS) process.	
Conce	pt of jointly	WSS process, Properties of autocorrelation and cross-correlation funct	tion.
Time-a	averages and	Ergodicity.	
Gaussi	ian random p	process and its properties.	
Modu	le IV	Linear System Response to Random Input	8Hrs
Spectra	al characteri	stics of a random process: power spectral density (PSD), cross-power s	spectral density and
their p	roperties, wł	nite and colored noise.	
Rando	m signal res	ponse of a linear system: mean, mean square value and autocorrelation	function of system
respon	se, cross cor	relation function.	
Text B	Books		
1.	Peyton Z. F	Peebles, "Probability, Random Variables, and Random Signal Principle	es", McGraw Hill,
	2 nd Edition	l.	
2.	Bertsekas,	Dimitri, and John Tsitsiklis,"Introduction to Probability", Athena Scien	ntific, 2 nd
	Edition,200	08.	
Refere	ence Books		
1.	Athanasios	Papoulis, S. Unnikrishna Pillai, "Probability, Random Variables, and	Stochastic Process",
	McGraw H	ill, 4 th Edition, 2002.	
2.	Alberto Leo	on-Gracia, "Probability, Statistics, and Random Processes for Electrica	al Engineering",
	Pearson, 3 rd	¹ Edition, 2008.	
Releva	ant MOOCs	Course	
1.	MIT OCW	v course on: "Introduction to Probability by Prof.John Tsitsiklis"	
	https://ocw	.mit.edu/resources/res-6-012-introduction-to-probability-spring-2018/	
2.	NPTEL co	urse on: "Probability and Random Variables/ Processes for Wireless (Communications by
	Prof.Aditya	K. Jagannatham" https://nptel.ac.in/courses/117/104/117104117/	

	S	avitribai Phule Pune Univer	sity, Pune	
M.E. (Electronics	s Comm	unication- Wireless Commu	nication Technology) 2020) Course
		504604: Research Method	lology	
Teaching Scher	me	Credits	Examination Schem	e
TH: 03 Hrs. / W	/eek	03	In- Semester: 50 Marks	
	com		End Semester : 50 Marks	
Prerequisite:				
Course Objectives:				
Objective of this cour	rse is to pi	ovide students with:		
1. The knowledg	ge of resea	urch and its methodologies		
2. Systematic ap	proach fo	r literature survey and technical wri	iting	
3. Strong founda	tion of re	search design and applied statistics		
4. Understanding	g the conc	epts of plagiarism and IPR		
Course Outcomes:				
Upon the completion	of this co	urse, students will be able to:		
CO1: Formulate a we	ell-defined	l research problem, aim and objecti	ves	
CO2: Design appropri	riate expe	riments for systematic research and	critically analyse the data using	g applied
statistical tools.				
CO3: Develop enhan	ced skills	et for effective technical /scientific	writing, quality manuscript and	research
proposal.				
		Course Contents		
Module I	Introduc	tion to Research, Literature Surv	ey and Problem Definition	10Hrs
Introduction to resear	ch, Types	of research, Phases of research, Fe	atures of a good research study,	
Importance of literatu	re survey	, Resources for literature survey, Re	eading scientific paper, white pa	per and
patent, Recording and	l summari	zing the findings and observations,	Identifying the gaps, Formulati	ng a
problem statement, D	efining th	e scope and objectives of the define	ed research problem.	
Module II	Research	Design and Applied Statistics		10 Hrs
Introduction to resear	ch design	, Approaches of research design, Ty	ypes of research designs, Princip	ples of
experimental design,	Design of	experiments, sampling concepts.		
Regression analysis, I	Parameter	estimation, Multivariate statistics,	Principal component analysis, S	state
vector machines, unce	ertainty ar	nalysis, concepts of mathematical m	nodeling and performance predic	ction.
Module III	Presentin	g and Publishing the Research F	indings	8Hrs
Types of publications	, Journal	ranking, Journal metrics, Citation in	ndex, various documentation to	ols,
referencing tools and	presentati	ion tools, Scientific writing - writin	g quality research manuscript /	paper,
report and thesis, Dev	veloping a	research proposal, related case stud	dies.	
Module IV	Research	Ethics (Plagiarism and Intellectu	al Property Rights -IPR)	8 Hrs
Introduction to plagia	arism, Ty	pes of plagiarism, Software used t	o identify plagiarism, Plagiaris	m polices,
Techniques to avoid p	olagiarism	 l.		= .
Introduction to IPR a	nd its sign	ificance, Various forms of IPR, Pat	tent filing process in India, Role	of IPR in
technology transfer, F	Recent dev	velopments, Case studies related to	Plagiarism and IPR.	

Text Books:
1. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction", Juta & Co.Ltd., 2 nd
Edition.
2. Ranjit Kumar, "Research Methodology: A Step-by-Step Guide for Beginners", Sage Publications,
3 rd Edition.
Reference Books:
1. Stuart Melville and Wayne Goddard, "Research Methodology: An introduction for Science &
Engineering students", Juta & Co. Ltd
Relevant MOOCs Course:
1. Introduction to research, by professors in IIT Mumbai and IIT Madras https://onlinecourses-
archive.nptel.ac.in/noc18_ge12/course
2. Research Writing, By Prof. A. Malik IIT Kharagpur
https://onlinecourses-archive.nptel.ac.in/noc18_mg13/course
3. Research Methodology, By Prof. G.S.Bajpai National Law University,
Delhihttps://onlinecourses.swayam2.ac.in/cec21_ge16/ preview?
4. MCO-03: Research Methodology and Statistical Analysis (Commerce Category)
By Dr. Subodh Kesharwani Indira Gandhi National Open University,
https://onlinecourses.swayam2.ac.in/nou21_cm03/preview?
Other Resources/Links:
1. Understanding Research Methods (Coursera)
2. Being a researcher in Information Science and Technology (Coursera)

	Saviti	ribai Phule Pune Univ	ersity, Pune	
M.E. (Electron	nics Communica	ation- Wireless Comm	unication Technolo	gy) 2020 Course
5040	605 (A): Mather	matics for Wireless Co	ommunication (Elec	tive I)
Teaching	Scheme	Credits	Examinatio	n Scheme
TH: 04 Hr	s. / Week	04	In Semester: 50 Mark	S
			End Semester: 50 Ma	rks
Prerequisite: Fund	ctions, Calculus, Co	ounting Principles.		
Course Objective	S			
Objective of this co	ourse is to provide	students with	• •	
1. The knowle	edge and understan	ding of advanced digital tel	ecommunications syster	ns
2. Provide a s	trong foundation of	f fundamental digital comm	unication system	
3. Detailed an	alysis of end to end	digital communication sys	stem	
4. Know abou	it the applications c	of convex optimization in si	gnal processing, wireles	s communications,
and networ	king research			
Course Outcomes	1 · .·		•	. 1 .
CO1: Model digita	al communication s	ignals and systems using ap	propriate mathematical	techniques
CO2 : Represent an CO3 : Carry Out th	e comparative anal	lysis in terms of specified p	arameters	ometrically.
CO4: Carry out de	tailed analysis of C	Detimum receiver for AWG	N Channel	
CO5: Choose an a	ppropriate modulat	ion schemes and Optimum	Receivers according to	design criteria
CO6: Provide sour	nd evaluation of pra	actical digital communication	on systems in terms of th	neir performance and
complexity.		~ ~ ~		
		Course Contents		
Module I	Linear Algebra-			8Hrs
Vectors: geometric	cal representation, a	ingle and dot product.		
<i>n</i> -Space: dot produ	ict, norm, angle, pro	operties of dot product and	norm, orthogonality, No	rmalization.
Generalized Vecto	or Space: vector sj	pace, inner product, norm	, span, subspace, linear	dependence, bases,
expansion, dimensi	ion, Gram-Schmidt	Orthogonalization, best ap	proximation and orthogo	onal series expansion.
System of Linear	equations: homo	genous and nonhomogene	eous equations, consiste	ent and inconsistent
solutions, solution	using Gauss elimin	nation, matrix notation, Gau	ss-Jordan reduction met	hod.
Module II	Linear Algebra-	I		10Hrs
Matrix Algebra: m	atrix addition, scala	r multiplication, matrix mul	ltiplication, transpose, ra	nk and its application
in linear dependen	ce, existence and u	niqueness for Ax=c, square	matrix, determinants and	l its properties.
Solution of Linear	System: inverse m	natrix method, Cramer's rul	e and LU factorization.	Eigenvalue Problem
Ax= λx : solution p	procedure and app	lications, Cayley-Hamilton	theorem, symmetric n	natrix andeigenvalue
problem, diagonali	zation.			
Module III	Convex Optimiz	ation		12Hrs
Introduction: math	ematical optimizat	ion, role of convex optimi	zation. Convex sets: aff	ine and convex sets,
examples, operation	ons that preserve of	convexity, generalized ine	qualities. Convex funct	ions: properties and
examples, operati	ons that preserve	e convexity, conjugate f	function, quasi-convex	functions. Convex
optimization probl	ems: linear optimiz	zation problems, quadratic	optimization problems,	vector optimization.
Duality: Lagrange	e dual function a	nd problems, geometric	and saddle-point interp	pretation, optimality
conditions, perturb	ation and sensitivit	y analysis.		
Module IV	Field Theory			6Hrs

Group: subgroup, cyclic group and order of an element, cosets, Lagrange theorem, isomorphism, homomorphism, field, finite field, binary field arithmetic, Galois field ($GF(2^m)$): basic properties and computation using $GF(2^m)$.

Text Books

- 1. Michael D. Greenberg, "Advanced Engineering Mathematics", Pearson, 2nd Edition, 2002.
- 2. Stephen Boyd and LievenVandenberghe, "Convex Optimization", Cambridge University Press.
- 3. Shu Lin, Daniel J. Costello, "Error Control Coding", Pearson, 2nd Edition, 2011.

Reference Books

- 1. Strang, Gilbert, "Introduction to Linear Algebra", Wellesley-Cambridge Press, Fourth Edition, 2009.
- 2. D. P. Palomar, Y. C. Eldar, "Convex Optimization in Signal Processing and Communications", Cambridge Press, 2010.
- 3. Dimitri P. Bertsekas, "Convex Analysis and Optimization", Athena-Scientific, 2003.

Relevant MOOCs Course

1. MIT OCW course on: "Linear Algebra by Prof.Gilbert Strang" https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/

2. NPTEL course on:

- a. Lecture Notes on "Algebra-II by Prof.Jugal K. Verma" https://nptel.ac.in/courses/111/101/11110001/#
- b. "Galois Theory by Prof.DilipPatil" <u>https://nptel.ac.in/courses/111/101/11101117/#</u>

Other Resources/Links

1. Stephen Boyd and LievenVandenberghe, "Convex Optimization", Cambridge University Press [Online: <u>https://web.stanford.edu/~boyd/cvxbook/</u>]

Teaching Scheme Credits Examination Scheme Teaching Scheme Credits Examination Scheme TH: 04 Hrs. / Week 04 In Semester: 50 Marks Prerequisite: Signals and Systems, Probability Theory, Linear Algebra Course Objectives Objectives is to provide students with 1. Overview and Requirements for 5G 2. Advanced Techniques and Trends in 5G 3. The key technologies for 5G 4. Provide a detailed trends of technologies for 5G 5. State of the art technologies and current status of 5G
Teaching SchemeCreditsExamination SchemeTH: 04 Hrs. / Week04In Semester: 50 Marks End Semester: 50 MarksPrerequisite: Signals and Systems, Probability Theory, Linear AlgebraCourse ObjectivesObjective of this course is to provide students with1. Overview and Requirements for 5G2. Advanced Techniques and Trends in 5G3. The key technologies for 5G4. Provide a detailed trends of technologies for 5G5. State of the art technologies and current status of 5G
TH: 04 Hrs. / Week 04 In Semester: 50 Marks Prerequisite: Signals and Systems, Probability Theory, Linear Algebra End Semester: 50 Marks Course Objectives Objectives Objective of this course is to provide students with 1. Overview and Requirements for 5G 2. Advanced Techniques and Trends in 5G 3. The key technologies for 5G 4. Provide a detailed trends of technologies for 5G 5. State of the art technologies and current status of 5G
TH: 04 Hrs. / Week04In Sentester: 50 MarksPrerequisite: Signals and Systems, Probability Theory, Linear AlgebraCourse ObjectivesObjective of this course is to provide students with1. Overview and Requirements for 5G2. Advanced Techniques and Trends in 5G3. The key technologies for 5G4. Provide a detailed trends of technologies for 5G5. State of the art technologies and current status of 5G
Prerequisite: Signals and Systems, Probability Theory, Linear Algebra Course Objectives Objective of this course is to provide students with 1. Overview and Requirements for 5G 2. Advanced Techniques and Trends in 5G 3. The key technologies for 5G 4. Provide a detailed trends of technologies for 5G 5. State of the art technologies and current status of 5G
Course Objectives Objective of this course is to provide students with 1. Overview and Requirements for 5G 2. Advanced Techniques and Trends in 5G 3. The key technologies for 5G 4. Provide a detailed trends of technologies for 5G 5. State of the art technologies and current status of 5G
Objective of this course is to provide students with Overview and Requirements for 5G Advanced Techniques and Trends in 5G The key technologies for 5G Provide a detailed trends of technologies for 5G State of the art technologies and current status of 5G
 Overview and Requirements for 5G Advanced Techniques and Trends in 5G The key technologies for 5G Provide a detailed trends of technologies for 5G State of the art technologies and current status of 5G
 Advanced Techniques and Trends in 5G The key technologies for 5G Provide a detailed trends of technologies for 5G State of the art technologies and current status of 5G
 3. The key technologies for 5G 4. Provide a detailed trends of technologies for 5G 5. State of the art technologies and current status of 5G
 4. Provide a detailed trends of technologies for 5G 5. State of the art technologies and current status of 5G
5. State of the art technologies and current status of 50
L'AURSA E DITEAMAS
CO1: Undate the latest trends in wireless communications
CO2: Identify the features and requirements of 5G.
CO3: Present a detailed report on various key technologies for 5G.
Course Contents
Module IOverview of 5G Technologies8Hrs
Evolution of 1G to 5G, Requirements of 5G, 5G Architecture, Functionalities
Module IINon Orthogonal Multiple Access10 Hrs
OFDMA, Limitations of OFDMA, NOMA, concept of NOMA, features, mathematical foundation for
NOMA, Transmission and Receiver architecture, case study.
Module IIIMassive MIMO10 Hrs
Concept of massive MIMO, MIMO architecture, challenges, implementation issues, research trends and
applications to 5G
Module IVmmWave and Visible Light Communications8Hrs
Back ground and concept of mmWave Communications, Frequency bands, propagation characteristics,
channel models, applications and challenges in 5G
Text Books
1. L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen and L. Hanzo, "A Survey of Non-Orthogonal Multiple
Access for 5G," in IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2294-2323,
thirdquarter 2018, doi: 10.1109/COMST.2018.2835558.
2. Robin Chataut, Robert Akl, "Massive MIMO Systems for 5G and beyond Networks-Overview,
Recent Trends, Challenges, and Future Research Direction" Sensors, May 2020,
doi:10.3390/s20102753
3. A. N. Uwaechia and N. M. Mahyuddin, "A Comprehensive Survey on Millimeter Wave
Communications for Fifth-Generation Wireless Networks: Feasibility and Challenges," in IEEE
Access, vol. 8, pp. 62367-62414, 2020, doi: 10.1109/ACCESS.2020.2984204.
Reference Books
1. Vincent W.S Wong, Key Technologies for 5G Wireless Systems, Cambridge University Press, April
2017

Savitribai Phule Pune University, Pune				
M.E. (Electronics Communica	tion- Wireless Comm	unication Technolog	gy) 2020 Course	
504605 (C): Internet of Things	(Elective – I)		
Teaching Scheme	Credits	Examinatio	n Scheme	
TH: 04 Hrs. / Week 04 In - Semester: 50 Marks				
Description Communication Networks In Fig	-1 - 1 1 - 1 C	End Semester: 50 Ma	rks	
Prerequisite: Computer Networks, En	nbedded Systems			
Course Objectives	tudanta with			
1 The browledge and understand	indents with			
1. The knowledge and understand	ing of internet of 1 mings	Things and used of LaT	C a avaritar	
2. Provide a strong foundation of	iundamentals of Internet of	Things and need of 101	Security	
3. Get acquainted with various co	mmunication protocols of in	iternet of Things		
4. Detailed understanding of prese	ent scope of internet of 1 min	igs with case studies		
Course Outcomes		1 1		
CO2 D L L L L	various protocols of standar	d communication layers.		
CO2: Represent and analyze various c	ommunication models, carr	y out the comparative an	alysis in terms of	
specified parameters.				
CO3: Choose an appropriate communi	cation model for given desi	gn criteria		
CO4: Understand essentials of IoT Sec	curity			
CO5: Provide most optimum model of	connectivity solution to va	rious things in different	application areas.	
	Course Contents			
Module I Introduction to I	Internet of and Things (Io	Τ)	10 Hrs	
Introduction: Enabling Technologies of I	oT, Physical Design of IoT, L	ogical Design of IoT, IoT	communication	
Models, IoT Communication API's				
Cloud Services: IAAS, PAAS, SAAS, IO	Specific Cloud Services			
KFID: Introduction to KFID and its Appli			10 Um	
Niodule II Key Ffolocols-1 DUV/MAC Lovert Wireless HADT ZW/	Divoto oth Low Engravy 7	ahaa Smart Engrav		
Network Layer: IPv4 IPv6 6LoWPAN	ICMP PDI COAP	igbee Smart Energy		
Transport I over: (TCP UDP DCCP SCTP) (TIS DTIS)				
Session Layer: HTTP. CoAP. XMPP. AMOP. MOTT				
Module III IoT Security 10 Hrs				
Vulnerabilities Security Requirements	and Threat Analysis. Misus	e Cases. IoT Security To	omography, and	
Layered Attacker Model Identity Management and Establishment Access Control and Secure Message				
Communication. Security Models. IoT Security Protocols.				
Module IVIoT development Tools and Case Studies10 Hrs				
Software and Hardware Distformer	Contiki OS Coois Simulata	r Daenharmy Di Dlattam	forioT	
Soliware and mardware Platforms: Confike OS, Cooja Simulator, Raspberry Pl Platform for 101				
IoT Case Studies: Smart Cities, Agriculture, Health and Lifestyle, Industry, Home Automation, Telecom/5G.				

Text Books

- Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on Approach)", University Press 1st Edition, 2014
- 2. Jeeva Jose, "Internet of Things", Khanna Book Publishing, 2018
- 3. Raj Kamal, Internet of Things: Architecture and Design Principle", McGraw Hill Education (India) 2017

Reference Books

- 1. Lu Yan, Yan Zhang, Laurence T. Yang, Huansheng Ning, "The Internet of Things: From RFID to the Next-Generation Pervasive Networked"
- 2. Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things"
- 3. HakimaChouchi, "The Internet of Things Connecting Objects to the Web", Wiley Publications.
- 4. Asoke K Talukder and Roopa R Yavagal, "Mobile Computing," Tata McGraw Hill, 2010.
- 5. Tanenbaum, Andrew S, "Computer Networks", Pearson Education, 4th Edition.
- 6. William Stallings, "Data and Computer Communications", Pearson Education, 6th Edition.

Relevant MOOCs Course

NPTEL-

Introduction to internet of things - Course (nptel.ac.in)

Coursera

An Introduction to Programming the Internet of Things (IOT) | Coursera

Savitribai Phule Pune University, Pune					
M.E. (Electronic	cs Communicat	ion- Wireless Commu	nication Technology	7) 2020 Course	
504605 (D)	: Modeling & S	Cuodita	Ication Systems (Ele	ective – 1)	
Teaching	Scheme:	Creatis	Examination In-Somostor: 50 Mark	Scheme:	
TH: 04 Hr	s./ Week	04	End Semester: 50 Ma	rks	
Prerequisite: Signa	ls and Systems, dig	gital communications system	ns, software tools MATI	LAB/ LabVIEW	
Course Objectives					
Objective of this cou	urse is to provide st	udents with			
1. The knowled	lge and understand	ing of Modeling & Simulati	on of Communication S	ystems	
2. To study the	modeling methodo	logies of a telecommunicat	ion system.		
3. To analyze the	he techniques invol	ved in performance estimat	ion of telecommunication	on systems.	
4. To apply ran	dom process conce	pts in telecommunication s	ystem simulation.		
5. To simulate	the QAM in digital	radio link environment			
Course Outcomes					
CO1: To Analyze the	ne role of important	elements of simulation and	l modelling paradigm.		
CO2: To compare a	nd analyze differer	t modeling methodologies	of a telecommunication	system.	
CO3: Generate rand	lom numbers of art	pitrary PDF for modelling control of the second sec	ommunication data and	channels.	
CO4: Analyze and CO5: A nalyze and C	lesign Monte Carlo	simulation algorithms.	anotin o okonnal madala (
OAM in speci	fied digital radio li	nulation techniques in gene nk environment	erating channel models t	o simulate the	
QAM III Speel		Course Contents			
Module I	Simulation Meth	odology		8Hrs	
Introduction. Concept	s of methodology. Pe	erformance Estimation. Simula	ation sampling frequency.	Low pass	
equivalent simulation	models for bandpass	signals, Multicarrier signals,	Non-linear and time-varyi	ng systems, Post	
processing – Basic gra	aphical techniques ar	d estimations.	5		
	Random Signal	Generation & Processing,	Monte Carlo	1011	
Niodule II	Simulation			12Hrs	
Uniform random num	ber generation, mapp	oing uniform random variables	s to an arbitrary pdf, Corre	lated and	
Uncorrelated Gaussian	n random number ge	neration, PN sequence generat	tion, Random signal proce	ssing, testing of	
random number gener	ators, Fundamental o	concepts, Application to comm	nunication systems, Monte	Carlo integration,	
Semi-analytic techniq	ues.				
Module III	Modeling of Comi Subsystems	nunication Systems: Transn	nitter and Receiver	10 Hrs	
Information Sources,	Formatting/Source C	Information Sources, Formatting/Source Coding, Digital Waveforms, Line Coding, Channel Coding, Radiofrequency			
modulation, Demodulation and Detection, Calibration of Simulations.				g, Radioffequency	
modulation, Demodul	ation and Detection,	Calibration of Simulations.	-	g, Radioffequency	
Module IV	ation and Detection, Estimation of para Simulation, Case	Calibration of Simulations. Ameters and Performance M Studies	easures from	12 Hrs	
Module IV Estimating the Average	ation and Detection, Estimation of para Simulation, Case S ge Level of a Wavefo	Calibration of Simulations. ameters and Performance M Studies orm, Estimation of Signal-to-N	easures from loise Ratio, Estimating Per	12 Hrs formance	
Module IV Estimating the Averag Measures for Digital S	ation and Detection, Estimation of para Simulation, Case S ge Level of a Wavefo Systems,	Calibration of Simulations. Ameters and Performance M Studies Frm, Estimation of Signal-to-N	leasures from	12 Hrs formance	
Module IV Estimating the Averag Measures for Digital S Case Study: 64-QAM	ation and Detection, Estimation of para Simulation, Case S ge Level of a Wavefo Systems, I Modulation Schemo	Calibration of Simulations. ameters and Performance M Studies orm, Estimation of Signal-to-N e in a Fading Environment.	easures from	12 Hrs formance	
Module IV Estimating the Averag Measures for Digital S Case Study: 64-QAM Text Books	ation and Detection, Estimation of para Simulation, Case S ge Level of a Wavefo Systems, Modulation Schemo	Calibration of Simulations. ameters and Performance M Studies orm, Estimation of Signal-to-N e in a Fading Environment.	easures from	12 Hrs formance	
Module IV Estimating the Averag Measures for Digital S Case Study: 64-QAM Text Books 1. M.C. Jeruchir	ation and Detection, Estimation of para Simulation, Case & ge Level of a Wavefor Systems, Modulation Scheme n, P.Balaban and K.	Calibration of Simulations. ameters and Performance M Studies orm, Estimation of Signal-to-N e in a Fading Environment. Sam Shanmugam, Simulation	Joise Ratio, Estimating Per of Communication System	12 Hrs formance ns: Modeling,	

2. William.H.Tranter, K. Sam Shanmugam, Theodore. S. Rappaport, Kurt L. Kosbar, Principles of Communication Systems Simulation, Pearson Education (Singapore) Pvt. Ltd, 2013.

Reference Books

- 1. Averill. M. Law and W. David Kelton, Simulation Modeling and Analysis, McGraw Hill Inc., 2000.
- 2. Geoffrey Gorden, System Simulation, Prentice Hall of India, 2nd Edition, 1992.
- 3. Jerry Banks and John S. Carson, Discrete Event System Simulation, Prentice Hall of India, 1984
- 4. Frevert, R., Haase, J., Jancke, R., Knochel, U., Schwarz, P., Kakerow, R., Darianian, M. Modeling and Simulation for RF System Design, Springer US, 2005

Relevant Coursera/ MOOCs Course

https://www.coursera.org/lecture/modeling-simulation-natural-processes/modeling-and-simulation-F7 vas

Other Resources/Links

- www.cse.wustl.edu/~jain/cse567-08/ftp/k_27trg.pdf
- https://www.iitk.ac.in/new/ee669a

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course					
	504607: Lab Practice	-I			
Teaching Scheme:CreditsExamination Scheme:					
TW: 50 Marks					
OR: 50 Marks					
Laboratory experiments based on the courses being taught. Minimum ten experiments, case studies to be					
carried out including hardware and simulation based experiments.					

SEMESTER - II

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 504608: Signal Processing for Wireless Communication

Teaching	g Scheme	Credits	Examination	n Scheme:
ТΗ. 03 Н	rs / Wook	03	In -Semester: 50 Mar	ks
111. 05 11	15. / WUCK	05	End Semester: 50 Ma	rks
Prerequisite: Sig	gnals and Systems,	Signal processing, Probab	lity Theory	
Course Objective	es			
Objective of this of	course is to provid	e students with		
1. The know	ledge and understa	anding of signal processing	for wireless communicat	tion.
2. Basics of s	stochastic signal p	rocessing.		
3. Knowledg	ge of Power spectru	um estimation and adaptive	flters.	
4. Detailed u	inderstanding of th	e concept of Hypothesis te	sting.	
5. Apply the	hypothesis testing	concepts to detection of si	gnals.	
6. Provide a	strong foundation	of detection and estimation	theory.	
Course Outcome	es			
CO1: Discuss and	d design adaptive f	filters.		
CO2: Compare an	nd contrast the var	ious power estimation tech	niques in the estimation of	of PSD.
CO3: Discuss and	d analyze the prop	erties of stochastic signals.		
CO4: Apply hypo	othesis testing to si	ignal detection problems.		
COS: Detection of	or signals in white	gaussian noise.	timator	
		Course Contents		
Module I	Power Spectrum	Estimation and Adaptiv	 e Filters	8Hrs
Spectrum Estimat	tion and Modelling	Problem of P	SE Non parametric and t	parametric spectral
estimation. AR m	odel. MA model a	nd ARMA model. least me	an square estimation.	julumente spectru
Adaptive Filters:	Introduction to ste	epest descent adaptive filt	ers LMS algorithm appl	ication to noise
cancellation. RLS	algorithm.		, <u></u> , <u></u> , <u>_</u> , <u>_</u> , <u>_</u> , <u>_</u> ,	
Module II	Stochastic Signa	l processing, Hypothesis '	Testing	10 Hrs
Definition of detection and estimation, review of deterministic and random signal concepts, Transformation				
of random variables using Gaussian density, Rayleigh density, Cauchy density, Uniform density, Chi				
squared density, Hypothesis testing, Bayes detection, Max detection, ML detection, Nevman Pearson				
criterion, Multiple hypothesis testing, composite hypothesis testing, Receiver operating characteristic and				
performance				
	Detection of Sign	nals in Gaussian white No	ise and colored	10.11
Module III	Gaussian noise			10 Hrs
Sign detector and	its performance a	nalysis, binary detection pr	oblem, matched filters, N	1-ary

communication system, detection of signals with random parameters, Whitening filter, Discrete time detection of known signals in colored gaussian noise, Discrete time colored noise detector, Whitening via spectral factorization.

Module IV	Estimation Theory	8Hrs		
Introduction, Bas	Introduction, Basic estimation schemes, MAP estimation estimation, Bayes estimator, Properties of			
estimator, Wavef	orm estimation			
Text Books				
1. M.D.Srina with appli	ath, P.K.Rajasekaran and R.Vishwanathan, "Introduction to statistical cation", Pearson Edition.	signal processing		
 Kalph D'Hippensten, "Detection Theory applications and Digital Signal Processing", CKC Press. John G. Proakis, "Digital Signal Processing: Principles, Algorithms, And Applications", Pearson Education. 				
Reference Books				
1. E Ifeacho	r and W.Jervis, "Digital Signal Processing a practical approach", Prent	ice Hall.		

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 504609: Information Theory & Coding

Teaching Scheme	Credits	Examination Scheme:
TH: 03 Hrs. / Week	03	In -Semester: 50 Marks End Semester: 50 Marks

Prerequisite: Digital communications systems, Probability theory and software tools like MATLAB/ LabVIEW are desirable, but not necessary

Course Objectives

- 1. Explain various fixed length and variable length source coding algorithms,
- 2. Understand the concept of a communication channel, Mutual information, and the channel capacity.
- 3. Give emphasis on coding and decoding of Error control coding techniques like Linear bock code, Cyclic codes, Convolution codes which can correct mainly random errors.
- 4. Study modern error coding like Turbo codes and LDPC codes

Course Outcomes

- **CO1:** Identify the need of source coding, Define, Calculate Entropy, Mutual information for various types of sources and channels.
- **CO2:** Apply the various source coding algorithms to Generate codeword, Calculate average code word length, efficiency, and redundancy.
- **CO3:** Formulate generator matrix for linear block code and Compute all code words. Determine the error detection and correction capacity for linear block code.
- **CO4:** Design BCH codes for varying error correction capacity and compare the performance with RS codes. Sketch tree diagram, Trellis diagram and state diagram and Apply the concept of Viterbi Decoding.
- CO5: To apply LDPC codes to 5G wireless networks for given specification.

Course Contents				
Module I	Information Theory & Source Coding	8 Hrs.		
Introduction: Ent	ropy, Relative Entropy, Mutual Information; InformationInequalities	Block to variable		
length coding: Prefix-free code, Bounds onoptimal codelength; Huffman coding. Variable to block length				
coding, theasymptotic equipartition property, UniversalSource Coding: Lempel-Ziv Algorithm-LZ77,				
Lempel-Ziv Welch Algorithm(LZW). Coding for sources with memory, Channel capacity of discrete				
memoryless channels. Noisy channel coding theorem; Gaussian Channel; ParallelGaussian Channel. Rate				
Distortion Theory; Blahut-Arimoto Algorithm forcomputation of channel capacity and rate-distortion				
function.				
Module II	Linear Block Codes and Cyclic codes	12Hrs		

Introduction to error control coding, Introduction to linear block codes & Cyclic Codes, Properties of linear block codes & Cyclic Codes: Syndrome, error detection. Decoding of linear block codes& Cyclic Codes, Distanceproperties of linear block codes & Cyclic Codes. Some simple linear block

codes: Repetition codes, Single parity check codes, Hamming codes, ReedMuller codes, Burst errorcorrecting code. Bounds on size of codes: Hamming bound, Singleton bound, Low density parity check codes, Decoding of low density parity check codes: Belief propagation algorithm on BEC, BSC and AWGN channels.

Module III	BCH, RS Convolutional and Turbo Code	12Hrs	
Encoding and dec	coding using BCH code and RS codes, Introduction to convolutional co	odes: Encoding, state	
diagram, trellis d	iagram, Classification, realization, distance properties. Decoding of a	convolutional codes:	
Viterbi algorithm	n, BCJR algorithm. Performance bounds forconvolutional codes.	Furbo codes: Turbo	
decoding, Distance	e properties ofturbo codes, Convergence of turbo codes, Applications	of linear codes	
Module IV	Information Theory and coding applications and case study	10 Hrs	
Channel coding techniques for 5G wireless networks, LDPC and Polar codes Codes, Advantages, and			
drawbacks of LD	PC codes and Polar codes. Quasi Cyclic LDPC code.Case study: LDI	PC (low density	
parity check) Codes in many of the standards including mMTC (massive machine type communication) and			
D2D (device to device communication)			
Text Books			
1. Shulin and	d Daniel j, Cistellojr., "Error control Coding", Pearson, 2nd Edition,20	10	
2. Ranjan Bose, "Information Theory coding and Cryptography", McGraw-Hill, 2nd Edition.			
Deference Books			

Reference Books

- 1. Todd Moon, "Error Correction Coding: Mathematical Methods and Algorithms", Wiley Publication
- 2. BernadSklar, "Digital Communication Fundamentals & applications", Pearson Education. Second Edition

Relevant NPTEL/ MOOCs Course

1. NPTEL course on Coding Theory by Dr. Andrew Thangaraj, Department of Electrical Engineering IIT Madras

Other Resources/Links

- 1. C. E. SHANNON," A Mathematical Theory of Communication" The Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656, July, October 1948.
- 2. Arora, K., Singh, J. & Randhawa, Y.S. A survey on channel coding techniques for 5G wireless networks. Telecommunication System 73, 637–663 (2020).
- Bae, J., Abotabl, A., Lin, H., Song, K., & Lee, J. (2019). An overview of channel coding for 5G NR cellular communications. *APSIPA Transactions on Signal and Information Processing*, 8, E17. doi:10.1017/ATSIP.2019.10

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course **504610: Antennas for Modern Wireless Communications Teaching Scheme** Credits **Examination Scheme:** In -Semester: 50 Marks TH: 03 Hrs. / Week 03 **End Semester: 50 Marks** Prerequisite: Electromagnetics, Antenna Fundamentals, Signal Processing **Course Objectives** Objective of this course is to provide students with 1. An overview antennas for the modern wireless communications 2. Latest trends, and multiple antenna techniques 3. The foundation of Smart antennas, MIMO techniques 4. Fundamentals of beamforming techniques **Course Outcomes CO1:** Identify a suitable antenna for the given standards with specifications. **CO2:** Apply the signal processing techniques to antenna arrays. **CO3:** Apply beamforming principles to multiple antennas and Optimize SNR, BER. **CO4:** Analyze and apply space time coding techniques to MIMO. **CO5:** Apply estimation and detection techniques using multiple antennas. **Course Contents** Module I 8Hrs **Antenna Arrays** Antenna parameters, array principles, linear, planar arrays, phased arrays **Adaptive and Smart Antennas** 10 Hrs Module II Fundamental principle of Adaptive and Smart Antennas, adaptive antenna algorithms, analog and digital beamforming, transmit and receive beam forming Module III **Multiple Input Multiple Output Antennas 10 Hrs** Introduction to MIMO systems, SISO, SIMO, MISO, MIMO structures and capacity, MIMO channel models, introduction to space time codes, diversity techniques, detection and estimation for MIMO **Direction of Arrival Estimation Module IV** 8Hrs Fundamental principle of direction of arrival estimation, mathematical analysis, classification of DOA estimation algorithms, subspace methods, MVDR, MUSIC and its variants, comparative study **Text Books**

- Rakhesh Singh Kshetrimayum, "Fundamentals of MIMO Wireless Communications", Cambridge University Press, 2017
- Theodore S Rappaport, "Smart Antennas: Adaptive Arrays, Algorithms, & Wireless Position Location", IEEE, 1998

Reference Books

1. Mietzneretal, Multiple Antenna Techniques for Wireless Communications, A Comprehensive Survey, IEEE Communications Surveys & Tutorials, Vol. 11, No. 2, Second Quarter 2009

Savitribai Phule Pune University, Pune

M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 504611 (A): Machine Learning for Wireless Communications (Elective – II)

Teaching Scheme	Credits	Examination Scheme
TH: 04 Hrs. / Week	04	In -Semester: 50 Marks
		End Semester: 50 Marks

Prerequisite: --

Course Objectives:

Objective of this course is to provide students with:

- 1. A strong foundation of fundamentals of Machine learning.
- 2. The knowledge and understanding of ML based various applications to wireless networks
- 3. Detailed analysis of MIMO systems in wireless communication designed using ML algorithms.

Course Outcomes:

- **CO1:** Understand the principles of machine learning and apply the fundamental principles for regression and classification.
- **CO2:** Apply machine learning principles in the design of some physical layer techniques in wireless communications.
- **CO3:** Design massive MIMO system by applying the principles of machine learning and deep learning.

Course Contents			
Module I Introduction of ML for WC	11Hrs		
Fundamentals of ML in WC, ML architectures, Supervised, un-supervised, reinforcement and	nd hybrid		
learning networks and approaches, various aspects and fundamentals of ML and DL and its	applications to		
wireless networks, Various aspects of communication systems, wireless system design, whe	re machine		
learning can be applicable in various OSI layers of a communication system, how real time	schedulers can		
benefit from advanced machine learning techniques			
Module II Supervised Learning and its applications in wireless systems	12Hrs		
Overview of supervised learning algorithms, Support vector machines (SVM), Sparse Bayes	sian learning		
(SBL), SVM for beamforming and data detection in millimeter wave systems, SBL for chan	nel estimation		
in massive MIMO, Applications in modulation classification, adaptive modulation and codin	ng mechanisms		
for wireless systems.			
Module IIIUn-supervised Learning and its applications in wireless systems	12Hrs		
Overview of unsupervised learning algorithms, K-means clustering, Gaussian mixture mode	els (GMM),		
Clustering for massive MIMO system using K means and GMM, Use of principal component	nt analysis in		
massive MIMO system design, auto encoders in wireless communication transceiver design			
Overview of reinforcement learning, Reinforcement learning-based channel sharing in wireless vehicular			
networks			
Module IVDeep Learning and its applications in wireless systems1	0 Hrs		
Deep learning for the physical layer, Deep architectures for Modulation Recognition, Chann	el State		
Information Prediction for 5G Wireless Communications and Deep Learning Based MIMO			

Communication. Deep Learning Techniques in Wireless Signal Recognition. Study of recent papers in the WC domain that explored deep learning approaches.

Reference Books:

- Fa-Long Luo, "Machine Learning for Future Wireless Communications", Wiley-IEEE Press, Feb 2020 (ISBN: 9781119562252)
- 2. Ruisi He, Zhiguo Ding, "Applications of Machine Learning in Wireless Communications", Institution of Engineering & Technology, 2019 (ISBN : 1785-616579, 9781785616570)

Other Resources/Links:

Some of the research papers and case studies may be included like:

- 1. "Deep Learning in Mobile and Wireless Networking: A Survey" (Jan -2019, Zhang et al., IEEE Communications Survey and Tutorial,(<u>https://arxiv.org/pdf/1803.04311.pdf</u>)
- 2. "Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both?",(June 2019), AlessioZappone, Senior Member, IEEE, (<u>https://arxiv.org/pdf/1902.02647.pdf</u>)
- 3. "6G White Paper on Machine Learning in Wireless Communication Networks" (April 2020), Samad Ali et al., <u>https://arxiv.org/pdf/2004.13875.pdf</u>)
- 4. "Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential, Limitations, and Future Directions," (2019), Morocho et al., (doi: 10.1109/ACCESS.2019.2942390)

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 504611 (B): Optical Wireless Communication (Elective -III) Teaching Scheme Credits Examination Scheme In -Semester: 50 Marks

TH: 04 Hrs. / Week 04 **End Semester: 50 Marks** Prerequisite: Knowledge of Semiconductor Devices, Data Communication, Fiber Optic Communication **Course Objectives** 1. To understand the characteristics of Indoor and Outdoor IR systems, performance of Wireless IR link under Atmospheric turbulence. 2. To understand the transmitter design considerations and receiver design considerations for optical wireless communication. 3. To understand different modulation schemes and different multiple access techniques for sharing IR medium. 4. To understand the standards of IrDA technology, features and the different layers of the IrDA protocols for optical wireless networking. **Course Outcomes** CO1: To explain the characteristics of Indoor and Outdoor IR systems, transmission impairments of Wireless IR communication. **CO2:** To design the transmitter based on LED/Laser diode for optical wireless communication. **CO3:** To design the receiver based on semiconductor photodiodes for optical wireless communication. **CO4:** To choose a right modulation scheme for indoor & outdoor applications and the different multiple access techniques. **CO5:** To apply IrDA protocols to create simple, cost-effective and low power transceivers that enable wireless IR communication in a number of devices. **Course Contents Module I** 8 Hrs Basic concept of Optical wireless communication, Optical Wireless channels, Light sources, Modulators, Detectors, Atmospheric transmission limitations, Effect of Rain, Fog, and Mist, Scintillation, Optical Path Length and Fermat's Principle, The Etendue or Lagrange Invariant, Edge Ray Principle. **Module II** 8Hrs Gaussian Beam, Telescope, beam expander, Optical filter and anti- reflection coating, Optical Concentrators, Wireless IR Receiver Requirements, DTIRC Characteristics. Comparison of Concentrators. Practical Issues. Different Shapes of DTIRCs, Tracking system, Laser beam steering device. **Module III** 8Hrs Optical Wireless Transmitter Design, Transmitter Design Considerations, Optical Source Characteristics. Types of Optical Modulation. Driver Circuit Design Concepts. Current Steering Output Circuit, Back Termination Circuit, Predriver, Data Retiming, Automatic Power Control, Transmitters Linearization Techniques.

Module IV8 HrsOptical wireless receiver design, Receiver Design Considerations, Photodetection in Reversebiased Diodes.
Choosing the Photodetector, Receiver Noise Consideration, Bit Error Rate and Sensitivity, Bandwidth,
Signal Amplification Techniques, Receiver Main Amplifier (RMA). Transceiver Circuit Implementation
Technologies.

Module V		8 Hrs	
Modulation and M	Multiple Access Techniques, IrDA PROTOCOLS. Wireless Protocol St	andards. The	
Infrared Data Ass	sociation, The Physical Layer Protocol, Framer/Driver, IrLAP, IrLMP,	Information Access	
Service and Proto	col, Tiny Transport Protocol, Session and Application Layer Protocols	, WIRELESS IR	
NETWORKING,	The Ad Hoc Network, Quality of Service (QoS), MIMO Wireless opti	cal channel,	
Pixelated Wireles	ss optical channel.		
Introduction to O	FDM based visible light communication		
Text Books			
1. Sadiku, M	latthew N. O., "Optical and Wireless Communications", CRC Press.		
2. Ramirez-l	niguez, Roberto Idrus, Sevia M, "Optical Wireless Communication	ns: IR for Wireless	
Connectiv	vity", Auerbach Publications.		
Reference Books	3		
1. Chi Lee, '	'Microwave Photonics", CRC Press, 2006.		
2. Steve Hra	nilovic, "Wireless Optical Communication Systems", Springer.		
Relevant MOOCs /NPTEL Course			
https://np	otel.ac.in/courses/117/104/117104127/		

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 504611 (C): Modern Satellite Communication (Elective -II)

504	611 (C): M	lodern Satellite Com	munication (Elective -	II)
Teaching Sch	eme	Credits	Examination	Scheme
TH. 04 Hag. / Y	In -Semester: 50 Marks			
1 H: 04 Hrs. / V	TH: 04 Hrs. / Week 04 End Semester: 50 Marks			5
Prerequisite: Knowle	dge of Semi	conductor Devices, Data (Communication, Fiber Optic	c Communication
Course Objectives				
1. To exemplify i	in depth know	wledgeof Satellite commu	nication system.	
2. To have a deta	iled understa	nding of the critical RF pa	arameters in satellite transce	iver and their effects
on performanc	e.			
3. To have a deta	ailed understa	anding of the fundamenta	l theory and concepts of the	e Global Positioning
and inertial nav	vigation Syst	em.		
Course Outcomes				
CO1: Design the orbit	tal and functi	ional metrics of satellite c	ommunication systems.	
CO2: Design the link	budget for sa	tellite services and analyz	e various parameters of tran	smitted and received
signals through	satellite.			•.• 1 1.•
CO3: Analyze user po	oven inortial	GPS pseudo-range data at	nd error sources for GPS po	sition calculations.
and mechanizati	on in various	coordinate frame	ing coordinate frames, atti	ude representation,
CO5: Develop a locat	ion based set	vice using external data s	ources and services, web m	apping and aspects
of mobile techno	ology.	C		
CO6: Analyze the esta	imation techn	niques for integration of re	emote sensing sensors in an	optimal navigation
system				
		Course Conte	nts	0.4 11
Module I		· ·		06 Hrs
Introduction to Satelli	te Communio	cation		
Overview of satellite of	communicati	ons Types of satellites Ke	pler's three laws of planetar	ry motion, Orbital
elements, Look angle	determination	n, Orbital pert		0.6 **
Module II	1			06 Hrs
Launch and Satellite S	systems		. 11'	C
Launch vehicles, Laur	iching techni	ques, Orbital effects in sa	tellite communication syste	ms performance,
Satellite subsystems, S	Satellite cons	tellations		0.0 11
Module III	111 0			08 Hrs
Global Navigation Sat	Global Navigation Satellite System			
Global Navigation Satellite Systems, Basic concepts of GPS, Space segment, Controlsegment, user				
segment, GPS constellation, GPS measurement characteristics, Selective availability, Anti spoofing(AS).				
Applications of satellite and GPS for 3D position, Velocity, determination as function of time, Regional				
navigation systems				
Module IV				06 Hrs
Inertial Navigation	1	.		
Introduction to Inertial Navigation, Inertial sensors, Navigation coordinates, System implementations,				
System, Level error models, introduction to Differential GPS, LADGPS, WADGPS, WAAS, GEO Uplink				
Subsystem (GUS), Clo	ock steering a	algorithms, GEO orbit det	ermination	

Module V		08 Hrs
Distress and safety, C	ospas, Sarsat, Inmarsat distress system, Location-based service, P	roblems. Overview
of sensors, Optical sen	nsors: cameras, Non-Optical sensor, Image processing, Image inte	rpretation, System
characteristics.Introdu	ction to remote sensing systems, Commercial imaging, Digital glo	obe, GeoEye,
Meteorology, Meteosa	at, Land observation, Landsat, Remote sensing data	
Module VI		06 Hrs
Introduction, Satellite	radio systems, XM satellite radio inc., Sirius satellite radio, Worl	d space, Direct
multimedia broadcast,	MBCO and TU multimedia, European initiatives, Direct To Hon	ne (DTH) television,
Implementation issues	s, DTH Services, representative DTH Systems, Military multimed	ia broadcasts, US
Global Broadcast Serv	vice (GBS), Business TV(BTV), GRAMSAT, Specialized service	s, Email, Video
conferencing, Internet		
Text Books		
1. Mohinder S. C	Grewal, Lawrence R. Weill, Angus P. Andrews, "Global Position	ing Systems, Inertial
Navigation, an	d Integration", John Wiley & Sons, 1 st Edition, 2011.	
2. T. Pratt, C.W.	Boastian, Jeremy Allnutt, "Satellite Communication", John Wiley	& Sons, 2 nd Edition,
2013.		
Reference Books		
1. Madhavendra	Richaria,, "Mobile Satellite Communications: Principles and	Trends", John Wiley
&Sons, 2 nd Ed	ition , 2014.	
2. D. Roddy, "Sa	tellite Communications", McGraw Hill, 4th Edition, 2011.	
3. W.L. Pritchar	rd, H.G Suyderhoud, "Satellite Communication Systems E	Engineering",Pearson
Education, 2 nd	Edition, 2011.	
4. Tri T. Ha, "Di	gital Satellite Communications, 2011", McGraw Hill, 2 nd Edition.	
Relevant MOOCs	NPTEL Course	
Modern Satellite Co	mmunication By Prof. Prof. KalyankumarBandyopadhyay	IIT Kharagpur
https://onlinecourses.r	nptel.ac.in/noc21_ee11/preview	
Other Resources/	Links	
https://nptel.ac.in/co	ntent/syllabus_pdf/117105131.pdf	
https://www.satcom.	<u>co.uk</u>	

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 504611 (D): Radar Communications (Elective -II) **Teaching Scheme** Credits **Examination Scheme** In -Semester: 50 Marks TH: 04 Hrs. / Week 04 **End Semester: 50 Marks** Prerequisite: Signals processing, Microwave engineering, Antenna system **Course Objectives** 1. To provide good understanding of radar system, radar signal processing, target tracking and image formation with design aspects **Course Outcomes CO1:** Understand radar systems. **CO2:** Analyze radar signal processing. **CO3:** Appreciate the wide range of applications of radar system. **CO4:** Able to design and develop the low power radar system. **Course Contents Module I Fundamentals of Radar** 8Hrs Radar Range Equation, Radar cross section estimation methods, RCS of simple and complex target Radar parameters: PRF, unambiguous range, velocity, frequency agility, pulse width, resolution, bearing angle, blind speed etc. Module II 10 Hrs **Types of Radar** Pulse radar, CW radar, MTI, tracking and search radar, weather radar, Navigational radar, MST radar, Synthetic Aperture radar, Phased array radar, Display types **Detection of radar signal** 10 Hrs Module III Radar signal processing, radar imaging, interferometry, polarimetry, beamforming techniques for radar Low power Radar design and case studies **Module IV** 8Hrs **Text Books** 1. Merrill Skolnik, "Radar Handbook", 3rd Edition 2. Jiaguo Lu, "Design Technology of Synthetic Aperture Radar", Wiley-IEEE Press. 3. Kung Yao, "Signal Processing Algorithms for Communication and Radar Systems", Cambridge University Press.

4. William L. Melvin, "Principles of Modern Radar: Radar Applications".

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 504612: Mini Project / Seminar J

504612: Mini Project / Seminar - 1		
Teaching Scheme	Credits	Examination Scheme
DD. 02 Ung /Waak	03	TW: 50 Marks
r K: US HIS./ Week	03	OR: 50 Marks

Prerequisite: Basics and Fundamental knowledge of the Engineering Graduate Subjects

Course Objectives:

Objective of this course is to provide students with

- 1. The knowledge and understanding of the subjects
- 2. To refer library resources- Journals/Magazines/Transactions
- 3. To have hands on practice

Course Outcomes:

CO1: To practice the concept learned.

CO2: To build a project and its implementation.

CO3: To Contribute to the technical domain.

Course Contents		
Module I	Literature Survey in current technologies	8Hrs
Student must refer	to good publications (IEEE Transactions, ACM & Indexed Journal	
Module II	Scope Identification	6Hrs
Findings, Observa	tion, Motivation, Problem Definition	
Module III	Resources and Platforms	8Hrs
Student to identify	and learn the resources required to carry out the work	
Module IV	Implementation, Experimentation and Validation	8Hrs
Lab work under g	uidance of teacher	
Module V	Report writing and presentation	8Hrs
Student to write and prepare report as per prescribed format		
Module VI	Publication	6Hrs
To present and publish results in reputed conferences/ journals, approved by college/University/UGC		
Evaluation by mentor, Feedback by Student		
Text Books		
1. Journals/ Transactions/ Magazines from Library		
2. Books related to Technical Writing		
Reference Books		
1. As specified by Teacher/ Mentor/ Guide/PG Committee of the Centre		

Savitribai Phule Pune University, Pune				
M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course				
504614: Lab Practice-II				
Teaching Scheme:CreditsExamination Scheme:				
TW: 50 Marks				
OR: 50 Marks				
Laboratory experiments based on the courses being taught. Minimum ten experiments, case studies to be				
carried out including hardware and simulation based experiments.				

SEMESTER - III

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 604601: Advanced Wireless Network

604601: Advanced Wireless Network

Teaching SchemeCreditsExamin		Examination Scheme
TH: 02 Hrs. / Wook	02	In -Semester: 50 Marks
TH: 05 HIS. / Week	03	End Semester: 50 Marks

Prerequisite: Digital communication, Computer networks

Course Objectives

Objective of this course is to provide students with

- 1. The knowledge and understanding of advanced wireless networking fundamentals
- 2. Provide a strong foundation of fundamental wireless networking system
- 3. Detailed analysis of end-to-end wireless networking system and its frame formats
- 4. Build an understanding of thevarious protocol stacks and standards of different wireless networks
- 5. Performance evaluation of Wireless networks technologies.

Course Outcomes

- **CO1:** Understand and familiarize various wireless data networking technologies, analyze IEEE 802.11physical layer-MAC layer standards, its Security Mechanisms and Comparing their performances.
- **CO2:** Describe and analyze various WPAN and WMAN wireless networks, its specifications, protocol stack understanding, and its Security Mechanisms.
- **CO3:** Represent and analyze various advanced wireless technologies like LoRa, SigFox, NFC, LMDS, MMDS in the terms of network architecture, Frame structure, specifications, advantages, disadvantages and their technical comparison in detail.
- **CO4:** Explain and analyzevarious advanced wireless technologies likeZigbee, Z-wave, Ultra-Wideband (UWB)in the terms of network architecture, Frame structure, specifications, advantages, disadvantages and their technical Comparison in detail

Module I	Introduction to wireless data networks and 802.11 WLAN	8Hrs

Data Networks and Internetworking, Introduction to Wireless Data Networks, MAC layer, Physical layer of IEEE 802.11, The 802.11 Standards (WLAN or WI-FI), Potential Security Issues with Wireless LAN Systems, Overview of 802.11b Security Mechanisms.

Module II	WPAN and WMAN networks	10 Hrs
Overview of the 802.15 WPAN, Bluetooth Network, Bluetooth technical specifications, High-Level View, The		
General Requirements of 802.15, How WPANs differ from WLANs, Power Levels and Coverage, Control of		
the Medium. Lifespan of the Network, 802.15 Security, the 802.16 Wireless MAN Standards, Metropolitan		
Area Mesh Netwo	orks, Implementing Wireless MANs.	

Module III	Wireless Technologies-I	10 Hrs
LoRa network architecture, LoRa Frame structure, LoRa protocol stack, SigFox specifications, SigFox		
network architecture, SigFox Frame structure, SigFox protocol stack. NFC features, NFC working, NFC		
network modes, NFC Frame structure, NFC protocol stack, NFC versus RFID, NFC security. LMDS		
architecture, LMDS advantages and disadvantages, MMDS architecture, MMDS advantages and		
disadvantages, Comparison between LMDS and MMDS.		

Module IV	Wireless Technologies-II	8Hrs	
Zigbee network	Zigbee network overview, Forming the Zigbee Network, Joining the Zigbee Network, zigbee protocol stack,		
Zigbee Physica	l and MAC Layer. Z-wave specifications, z-wave frequency bands, z-w	wave network, z-wave	
frame structure	, z-wave protocol stack.Ultra Wideband (UWB)wireless working, UV	VB transmitter, UWB	
receiver, Modu	ation Schemes, typical specifications.		
Text Books			
1. Vern D	bendorf, "Wireless Data technologies reference Handbook", Wiley Pub	lication.	
2. Behrouz	2. Behrouz A. Foruzan, "Data communication and Networking", Tata McGraw-Hill,5 th Edition.		
Reference Books			
1. Steve R	ackley, "Wireless Networking Technology: From Principles to Successf	ul Implementation",	
Elsevier	publisher.		
2. https://w	ww.rfwireless-world.com/Tutorials		
Relevant MOOCs Course			
Lecture Series on Wireless Communications by Dr.Ranjan Bose, Department of Electrical Engineering, IIT			
Delhi.			

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 604602: Software Defined Radio and Cognitive Radio

Teaching Scheme	Credits	Examination Scheme
TH: 03 Hrs. / Week	03	In -Semester: 50 Marks End Semester: 50 Marks
paraguisita. Digital communication	na avatama Communicatio	n Networks, software tools MATI AR/

Prerequisite: Digital communications systems, Communication Networks, software tools MATLAB/ LabVIEW are desirable, but not necessary

Course Objectives

Objective of this course is to provide students with

- 1. The knowledge and understanding of SDR Architectures
- 2. To study the Challenges, and issues regarding the implementation of SDR.
- 3. To analyze the techniques involved in Cognitive Radio Communications and networks
- 4. To applySpectrum Sensing techniques to Detect Primary System.
- 5. To review Cognitive radio in recent applications

Course Outcomes

CO1: To Analyze and compare different SDR Architectures.

- **CO2:** To investigates Challenges, and issues regarding the implementation of SDR.
- **CO3:** To analyze the techniques involved in Cognitive Radio Communications and networks for a specific network scenario.
- CO4: To compare various Spectrum Sensing techniques and to apply it to Detect Primary System.

CO5: To design and simulate Cognitive radio system for given specification and application.

Course Contents

Module I	Software Defined Radio	8Hrs
Software Define	d Radio Architecture, Digital Signal Processor and SDR Ba	seband Architecture,
Reconfigurable W	Vireless Communication Systems, Reconfigurable OFDM Implement	ntation, Digital Radio
Processing, Digita	al Radio Processing (DRP) Based System Architecture, Challenges,	and issues regarding
the implementation	on of SDR, Processing, programmability (flexibility) vs power consum	nption. Application of
SDR in advanced	d communication systems, Low-Cost Cognitive Radio Platform, G	Convergence between
military and com	mercial systems, case study of universal software radio peripheral (US	SRP)

Module II Cognitiv	ve Radio Communications and networks	12Hrs
--------------------	--------------------------------------	-------

Cognitive Radios and Dynamic Spectrum Access, the Capability of Cognitive Radios, Spectrum Sharing Models of DSA, Opportunistic Spectrum Access: Basic Components, Networking the Cognitive Radios, Analytical Approach and Algorithms for Dynamic Spectrum Access, Dynamic Spectrum Access in Open Spectrum, Opportunistic Spectrum Access, Opportunistic Power Control, Fundamental Limits of Cognitive Radios. Network Coding for Cognitive Radio Relay Networks, System Model, Network Capacity Analysis on Fundamental CRRN Topologies, Cognitive Radio Networks Architecture, Network Architecture, IP Mobility Management in CRN, Terminal Architecture of CRN, Cognitive Radio Device Architecture, Radio Access Network Selection, QoS Provisional Diversity Radio Access Networks, cooperative/Collaborative Diversity and Efficient Protocols, Statistical QoS Guarantees over Wireless Asymmetry, Collaborative Relay Networks, Scaling Laws of Ad-hoc and Cognitive Radio Networks, Network and Channel Models.

		40.77	
Module III	Spectrum Sensing and awareness	10 Hrs	
Spectrum Sensing	g to Detect Specific Primary System, Conventional Spectrum Sensing,	Power efficiency and	
energy/battery aw	vareness, Device capability awareness, RF Awareness		
Interference/noise	e temperature awareness, channel (medium, radio channel) awareness.	Location	
Awareness, Powe	er Control, Power-Scaling Power Control, Cooperative Spectrum Sensi	ng, Spectrum Sensing	
for Cognitive OF	DMA Systems, Cognitive Cycle, Discrimination of States of the Prim	ary System ,	
Spectrum Sensing	g Procedure, Spectrum Sensing for Cognitive Multi-Radio Networks,	Multiple System	
Sensing, Radio F	Resource Sensing.		
Module IV	Cognitive radio in recent applications and case study	12 Hrs	
Medium access control for CR, Applications of cognitive radio, Cognitive features in the standards (like			
802.16m, LTE advanced, 802.11n, adaptive frequency hopping in Bluetooth), Femto-cells and relation to			
cognitive radio, UWB and Cognitive radio (underlay and overlay) systems. Security issues in CRN. CR			
based Internet of Things (IoT).			
Case study: IEEE 802.22 WRAN standard			
Text Books			
1.PeymanSetoodeh and Simon Haykin, Fundamentals of Cognitive Radio, First Edition, by John Wiley &			
Sons, Inc, 2017			
2.Kwang-Cheng Chen and Ramjee Prasad Cognitive Radio Networks, John Wiley & Sons Ltd., 2009			
Reference Books	5		

1. HüseyinArslan, Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems Published by Springer 2007.

Relevant Coursera/ MOOCs Course

Basic of SDR and Practical applications by Dr. MeenakshiRawat, IIT Roorki. https://nptel.ac.in/courses/108/107/108107107/

Other Resources/Links

- Akyildiz, I. F., Lee, W.Y., Vuran, M.C., Mohanty, S., "NeXt Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: A Survey," Computer Networks (Elsevier) Journal, September 2006.
- Akyildiz, I.F., Lee W. Y., and Chowdhury, K., "CRAHNs: Cognitive Radio Ad Hoc Networks," Ad Hoc Networks (Elsevier) Journal, vol. 7, no. 5, pp. 810-836, July 2009.
- HaythemBanySalameh and Marwan Krunz, "Channel access protocols for multi-hop opportunistic networks: Challenges and recent developments," IEEE Network, Vol. 23, Issue 4, pp. 14-19, July-August 2009
- Rezwanul Mahmood M., Matin M.A. (2020) Current Research Trends on Cognitive Radio Based Internet of Things (IoT). In: Matin M. (eds) Towards Cognitive IoT Networks. Internet of Things (Technology, Communications and Computing). Springer, Cham, March 2020.

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 604603(A): Wireless Adhoc Network (Elective – III)

Teaching Scheme	Credits	Examination Scheme	
TH: 04 Hrs. / Week	04	In -Semester: 50 Marks	
	04	End Semester: 50 Marks	

Prerequisite: Digital communication, Computer networks, wireless communication

Course Objectives

Objective of this course is to provide students with

- 1. The knowledge and understanding of Ad Hoc Wireless Networks, Wireless Sensor Networks, Hybrid wireless Networks and related MAC, Network and Transport layer Protocols
- 2. To know the constraints of the wireless physical layer that affect the design and performance of ad hoc and sensor networks, protocols, and applications.
- 3. To understand MAC, Routing protocols that have been proposed for ad hoc and sensor networks.
- 4. To understand the energy issues in sensor networks and how they can be addressed using scheduling, media access control, and special hardware.
- 5. To develop efficient protocols for sensor and mobile networks. Also, apply Fundamental principles characteristics and develop information dissemination protocols for sensor and ad hoc networks.
- 6. Build an understanding of the Hybrid wireless Networks and carry out the Performance evaluation related to Power Control Schemes.

Course Outcomes

- **CO1:** Identify and disseminate the various unique issues in ad-hoc/sensor networks, describe current technology trends for the implementation, deployment of wireless ad-hoc/sensor networks and discuss the challenges in designing MAC protocols for ad-hoc networks.
- **CO2:** Understand various the challenges in designing routing protocols, transport protocols and their classifications for wireless Ad-hoc networks and accordingly, apply different routing technologies for designing a routing protocol.
- **CO3:** Comprehend, describe and analyzevarious sensor network platforms, tools, applications, MAC Protocols, Quality of a Sensor Network and related evolving standards.
- **CO4:** Exemplify and evaluate various Next-Generation Hybrid Wireless Architectures and related optimized routing mechanisms and efficient power control schemes

Course Contents			
Module I	Ad Hoc Wireless Networks and MAC Protocols	8Hrs	
Introduction. Issu	es in Ad Hoc Wireless Networks. Ad Hoc Wireless Internet. Introduct	ion, Issues in	
Designing a MAC	C Protocol for Ad Hoc Wireless Networks. Design Goals of a MAC Pr	rotocol for Ad Hoc	
Wireless Network	xs. Classifications of MAC Protocols. Contention-Based Protocols.		
Module II	Routing Protocols and Transport Layer Protocols	10 Hrs	
Introduction to Routing algorithm, Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks.			
Classifications of Routing Protocols.			
Introduction. Issues in Designing a Transport Layer Protocol for Ad Hoc Wireless Networks. Design Goals			
of a Transport Layer Protocol for Ad Hoc Wireless Networks. Classification of Transport Layer Solutions.			
TCP Over Ad Hoc Wireless Networks. Other Transport Layer Protocols for Ad Hoc Wireless Networks.			
Madula III	Windlogg Congon Notworks	10 II.	

Module III	Wireless Sensor Networks	10 Hrs
------------	--------------------------	--------

Introduction. Sensor Network Architecture. Data Dissemination. Data Gathering. MAC Protocols for Sensor Networks. Location Discovery. Quality of a Sensor Network. Evolving Standards. Other Issues.

Module IV Hybrid wireless Networks

8Hrs

Introduction. Next-Generation Hybrid Wireless Architectures. Routing in Hybrid Wireless Networks. Pricing in Multi-Hop Wireless Networks. Power Control Schemes in Hybrid Wireless Networks. Load Balancing in Hybrid Wireless Networks.

Text Books

- 1. Siva Ram Murthy, C. and Manoj,B. S., "Adhoc Wireless Networks Architectures and Protocols", Prentice Hall, 2nd Edition, 2004.
- 2. Perkins, Charles E., "Ad hoc Networking", Addison Wesley, 3rd Edition, 2003.

Reference Books

- 1. Toh, C. K., "Ad hoc Mobile Wireless Networks Protocols and Systems", Prentice Hall, 3rd Edition 2001.
- 2. Pahlavan, Kaveh., Krishnamoorthy, Prashant., "Principles of Wireless Networks: A united approach", Pearson Education, 2nd Edition, 2002.
- 3. Wang X. and Poor H.V., "Wireless Communication Systems", Pearson Education, 3rd Edition, 2004.
- 4. Schiller Jochen., "Mobile Communications", Person Education, 2nd Edition, 2003.
- 5. Carlos De Morais Cordeiro and Dharam P Agrawal, "Adhoc and Sensor Networks-Theory & Applications", Cambridge Univ Press India Ltd, 2nd Edition.

Relevant MOOCs Course

Lecture Series on Wireless Ad Hoc Networks and sensor networks by Prof. SudipMisra, Department of Computer Science and Engineering, IIT Kharagpur.

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 604603 (B): Telecommunications Network Management (Elective -III)

Teaching Sch	eme	Credits	Examinatio	on Scheme
	Waala	04	In -Semester: 50 Marl	ks
1 H: 04 Hrs. / V	week	04	End Semester: 50 Mar	rks
Prerequisite: Bas	ics and Fi	indamental of the Signals- Systems	and Networking subject	s
Course Objective	s:			
Objective of this c	ourse is to	p provide students with		
1. The princip	oles of Te	lecommunication Network Manager	ment.	
2. To gain kn	owledge o	on telecomm network management	protocols.	
Course Outcomes	5:			
CO1: Understandi	ing of Tel	ecom Network Management.		
CO2: To impleme	ent in netw	vork, the better management practic	es.	
		Course Contents	8	
Module I		Introduction		8Hrs
Overview of Data	Commun	ication and Network Management –	- Goals, Organization and	d Functions; Network
Management – Ar	chitecture	and Organization; Network Manag	ement Perspectives; Cur	rent Status and Future
of Network Manag	gement. N	etwork Topology, Network Node C	omponents, Transmissio	on Technology.
Module II	SNMP And Network Management 8Hrs			
Network Management Standards, Network Management Models, Organizational Model, Information Model,				
Communication Model. SNMPv1 –History of SNMP, Internet Organization and Standards, SNMP Model,				
Organizational Mo	odel, Syste	em Overview, Information Model. S	SNMP Communication N	Model, Functional
Model.SNMPv2 a	nd SNMv	3.		
Module III	Telecommunications Management Network8Hrs		8Hrs	
TMN Conceptual	TMN Conceptual Model, TMN Standards, TMN Architecture, TMN Management Service Architecture, TMN			
Integrated View, T	MN Imp	lementation.		
Module IV		Network Management App	lications	8 Hrs
Configuration Ma	nagement	, Fault Management, Performance	Management, Security	Management, Service
Level Management, Accounting Management, Report Management, Policy- Based Management				
Module V	Web Based Management6Hrs		6Hrs	
Setting-UP LAN	Setting-UP LAN Access, SNMP configuration, Switched Port Analyzer, Web Browser / Web Server			
Communication.				
Module VI	IP Network Management 6Hrs		6Hrs	
IP Network Mana	igement -	- Configuration, Management Info	rmation Base, Simple 1	Network Management
Protocol, IP-Based Service Implementation- Network Management Issues, OSS Architecture.				
Evaluation by mer	ntor, Feed	back by Student		

Text Books

- 1. Mani Subramanian "Network Management Principles and Practice", Addison- Wesley, 2000.
- 2. Salah Aiidarons, Thomas Plevayk, "Telecommunications Network Technologies and Implementations", Eastern Economy Edition IEEE press, New Delhi, 1998.

Reference Books

- 1. Lakshmi. G, Raman, "Fundamentals of Telecommunication Network Management", Eastern Economy Edition IEEE Press, New Delhi
- 2. J. Richard Burke, "Network Management: Concepts and Practice, A Hands-on Approach ", Pearson Education, 2008.

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 604603 (C): Wireless Networks Security (Elective- III)

Teaching Scheme	Credits	Examination Scheme
TH: 04 Hrs. / Week	04	In -Semester: 50 Marks End Semester: 50 Marks

Prerequisite: Digital communication, Computer networks, wireless communication

Course Objectives: Objective of this course is to provide students with

- 1. The knowledge and understanding of wireless networks insecurities, and related wireless security terminologies.
- 2. Provide a strong foundation of fundamental wireless Security Principles, Wireless Tools and Gadgets requirements.
- 3. Detailed analysis of end-to-end wireless network security and wireless client's security fundamentals, especially the factors that exacerbate Wireless Client Vulnerabilities
- 4. Build an understanding of the various attacks on protocol stacks and along with hardware and software entities of different wireless networks
- 5. Performance evaluation of different defense mechanisms of Wireless networks securities and effectiveness of them.

Course Outcomes

- **CO1:** Recognize and disseminate the various security principles required for making strong Wireless Security foundations with related standards, equipment, encryption techniques and tools for implementations.
- **CO2:** Understand and implement various attacks on wireless networks passively and actively with standard WEP and WPA mechanisms and Comparing their performances.
- **CO3:** Describe and analyze various Wireless Client Vulnerabilities, its deep understanding, and sniffing insecure Communications with tools and related technical procedures.
- **CO4:** Represent and evaluate various Defense for Securing Wireless Networks like WPA2-Enterprise with certificates Architecture, its correct deployment, selection of secured network operating system and its error free configuration for rugged wireless security implementations.

Course Contents			
Module I	Wireless Security Foundations	8Hrs	
Introduction to the	e Wireless Security, Security Principles, Wireless Networking Basics:	802.11a/b/g/n, Access	
Points, Autonomo	ous vs. Controller Based, SSID, BSSID, MAC Address, Beacons and E	Broadcasts,	
Associating and A	Authenticating, Encryption, Wireless Tools and Gadgets.		
Module II	Theory of Attacks on Wireless Networks	10 Hrs	
Setting the Stage, Authentication, Encryption, How WEP Works, How WPA Works, Attacking Wireless			
Networks, Wireless Reconnaissance, Actively Attacking Wireless Networks, Cracking WEP Encryption,			
Cracking a WPA	Passphrase.		
Module III	Attacking Wireless Clients	10 Hrs	
Wireless World, Wireless Client Vulnerabilities, Factors That Exacerbate Wireless Client Vulnerabilities,			
Wireless Reconnaissance, Sniffing Insecure Communications, Default Operations, Man-in-the-Middle			
Attacks.			
Module IV	Module IV Real-World Wireless Security Defenses 8Hrs		

Theory of Defense for Securing Wireless Networks, Setting the Stage, Phases of Wireless Deployment, Secure Design Principles for Wireless Networks, Useless Defenses, Good Wireless Defenses, Understanding the WPA2-Enterprise with Certificates Architecture, Deploying Secure Wireless Networks, Handling Wireless Guest Access, Handling Rogue Access Points and the Future of Wireless Security, The Wireless Engineer's Operating System of Choice.

Text Books

- 1. Tyler Wrightson, "Wireless Network Security A Beginner's Guide", US: McGraw-Hill Osborne Media, 1st Edition 2012.2017
- 2. Wolfgang Osterhage, "Wireless Network Security", Kindle Edition, 2nd Edition, 2018.

Reference Books

- 1. Yang Xiao, Xuemin Shen, Ding-Zhu Du, "Wireless Network Security", Springer Science & Business Media.
- 2. Aaron E. Earle, "Wireless Security Handbook", Taylor & Francis Group, LLC, Auerbach Publications, 2006.

Relevant MOOCs Course

Lecture Series on Cryptography and Network Security by Prof. D. Mukhopadhyay, Department of Computer Science and Engineering, IIT Kharagpur.

Savitribai Phule Pune University, Pune				
M.E. (Electronics Communic	cation- Wireless Com	nunication Technol	ogy) 2020 Course	
604603 (D): MI	MO Wireless Commu	nications (Elective	-III)	
Teaching Scheme	Teaching Scheme Credits Examination Scheme			
TH: 04 Hrs. / Week	04	In -Semester: 50 Mar	ks	
Provoquisita: Wireless Communication	tion Dringinlag Antonno Eu	End Semester: 50 Ma	rks	
Course Objectives	tion Principles, Antenna Fu	indamentais, Signal Proc	essing	
Course Objectives	studente with			
1 Understanding the importance	of MIMO for payt concretiv	on notworks		
1. Understanding the importance	iversity formats and spatial s	DII Iletworks.	the offect of feding	
2. Identify the fole of different d	conacity	nunuplexing in combating	g the effect of fauling	
3 An introduction to advanced N	AIMO concents like multi-u	ser MIMO massive MIM	O and SM-MIMO for	
next generation communication	in			
Course Outcomes	11			
1 Characterize and model the N	AIMO wireless channel			
2 Design and implement diversi	ty coding techniques to over	come the effect of fading		
3 Assemble different forms of d	iversity to improve the error	performance		
4. Design low-complexity. linear	and non-linear receivers	p••		
5. Evaluate the performance of c	oncatenated codes for MIM	O communication		
*	Course Contents	5		
Module I Introduction to MIMO Systems 8Hrs				
Introduction, Multi antenna systems, Array gain, Diversity gain, Data pipes, Spatial multiplexing, Wireless				
channel, MIMO channel characteristics, MIMO system model, MIMO system capacity, Water pouring				
principle				
Module II Diversity Technic	ques		8Hrs	
Diversity, Types, Selection diversity, Scanning diversity, Maximum ratio combining, Equal gain combining,				
Calculation of SNR	Calculation of SNR			
Module III Space-Time Blog	ck and Trellis Codes		12Hrs	
Transmit diversity with two antenna	s: The Alamouti scheme -	Orthogonal. and Quasi-	orthogonal space-time	
block codes -Linear dispersion co	des –Generic space-time	trellis codes -Basic sp	ace-time code design	
principles –Representation of space-time trellis codes for PSK constellation –Performance analysis for space-				
time trellis codes -Comparison of sp	ace-time block and trellis c	codes		
Module IV Introduction to N	Aassive MIMO		8Hrs	
Potential of massive MIMO systems, massive MIMO concept, uplink transmission with linear detection,				
down link with linear precoding, spectral efficiency, power allocation, limitations of massive MIMO				
Text Books				
3. Aditya K. Jagannatham, Principles of Modern Wireless Communications Systems, 2015, 1stEdition,				
McGraw-Hill Education, India				
4. Marzetta, T.L. Massive MIMO: An Introduction.Bell Labs Tech. J.2015,20, 11–22				
5. Erik G. Larsson etal, Massive	5. Erik G. Larsson etal, Massive MIMO for Next GenerationWireless Systems, IEEE Communications			
Magazine • February 2014				

Reference Books

- 1. A. B. Gershman, N. D. Sidiropoulus, Space-time Processing for MIMO Communications, 2011, 1stEdition, Wiley, NJ, USA
- 2. M. Janakiraman, "Space-time codes and MIMO systems", Artech House, 2004.3.
- 3. H. Jafarkhani, "Space-time coding: Theory & Practice", Cambridge University Press, 2005.

Relevant MOOCs Course

Fundamentals of MIMO Wireless Communication, By Prof. SuvraSekhar Das | IIT Kharagpur https://nptel.ac.in/courses/117/105/117105132/

Other Resources/Links

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 604604: Industry Internship-I / In-house Research Project-I / Seminar - II

Teaching Scheme:	Credits	Examination Scheme:
TH: 03 Hrs. / Week	03	TW: 50 Marks
		OR : 50 Marks

Students shall be permitted to choose Industry internship, In House Research Project or Employability Entrepreneurship as per the following Guidelines.

Industry Internship/Entrepreneurship: Institution shall facilitate or student may chose an industry internship in the appropriate field of Wireless Communication Technologies. Student shall directly report to industry for the duration of the course weekly on prescribed days as per the mutual convenience of the institute and industry without missing the course work at the institution. Student is required to prepare a detailed proposal on the nature of the work/project undertaken at the industry, name of the expert, and letter of intent from the industry, get it approved from the institute. Student is required to submit the weekly report to the institute. Student shall present a find report on the work carried out at industry in prescribed format to the institute. Appropriate evaluation scheme shall be evolved by the institute and marks shall be awarded appropriately as per the performance of the student.

In-House Research Project: Student shall be permitted to work under an ongoing funded research project under the faculty who is the Principal Investigator for funded project or student may choose any other topic of interest in the field of Wireless Communication. Student is required to submit the proposal with clear problem definition, scope of the work and a weekly progress on the work. Student is required to report to the institute/lab as per the regular schedule. Progress will be closely monitored by the institute. Student shall present a find report on the work carried out at industry in prescribed format to the institute. Appropriate evaluation scheme shall be evolved by the institute and marks shall be awarded appropriately as per the performance of the student.

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course 604605: Dissertation Stage - I				
Teaching Scheme:	Teaching Scheme:CreditsExamination Scheme:			
TH: 08 Hrs. / Week	s. / Week 08 TW: 50 Marks			
OR : 50 Marks				
Dissertation Stage – I : 604605				
As per the dissertation guidelines common to all the streams of E&TTC				

SEMESTER – IV

Savitribai Phule Pune University, Pune M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course				
604607: Industry Internship-II / In House Research Project – II				
Seminar – III				
Teaching Scheme	Credits Examination Scheme			
PR: 03 Hrs/week	03	TW: 50 Marks		
OR : 50 Marks				
Students shall be permitted to continue the work carried out in seminar - II or may chose the different				
industry/project following the similar guidelines				

Savitribai Phule Pune University, Pune		
M.E. (Electronics Communication- Wireless Communication Technology) 2020 Course		
604608: Dissertation Stage – II		
Teaching Scheme	Credits	Examination Scheme
PR: 03 Hrs/week	18	TW: 150 Marks
		OR : 50 Marks
As per the dissertation guidelines common to all the streams of E&TC		